References
Malhotra, V., Orci, L., Glick, B.S., Block, M.R. & Rothman, J.E. Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell 54, 221–227 (1988).
Block, M.R., Glick, B.S., Wilcox, C.A., Wieland, F.T. & Rothman, J.E. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc. Natl. Acad. Sci. U SA 85, 7852–7856 (1988).
Haas, A. and Wickner, W. hom*otypic vacuole fusion requires Sec17p (yeast α-SNAP) and Sec18p (yeast NSF). EMBO J 15, 3296–3305 (1996).
Banerjee, A., Barry, V.A., DasGupta, B.R. & Martin, T.F.J. N-ethylmaleimide sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. J. Biol. Chem. 271, 20223–20226 (1996).
Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF)-driven release of Sec17p (α-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83–94 (1996).
Sollner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).
Hanson, P.I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J.E. Structure and conformational changes in NSF and its membrane receptor complex visualized by quick freeze/deep-etch electron microscopy. Cell 90, 523–525 (1997).
Confalonieri, F. and Duguet, M. A 200-amino acid ATPase module in search of a basic function. BioEssays 17, 639–650 (1995).
Beyer, A. Sequence analysis of the AAA protein family. Prot. Sci. 6, 2043–2058 (1997).
Tagaya, M., Wilson, D.W., Brunner, M., Arango, N. & Rothman, J.E. Domain structure of an N-ethylmaleimide-sensitive fusion protein involved in vesicular transport. J. Biol. Chem. 268, 2662–2666 (1993).
CAS PubMed Google Scholar
Morgan, A., Dimaline, R. & Burgoyne, R.D. The ATPase activity of N -ethylmaleimide-sensitive fusion protein (NSF) is regulated by soluble NSF attachment proteins. J. Biol. Chem. 269, 29347–29350 (1994).
CAS PubMed Google Scholar
Sumida, M., Hong, R.M. & Tagaya, M. Role of two nucleotide-binding regions in an N-ethylmaleimide-sensitive factor involved in vesicle-mediated protein transport. J. Biol. Chem. 269, 20636–20641 (1994).
CAS PubMed Google Scholar
Whiteheart, S.W. et al. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol. 126, 945–954 (1994).
Nagiec, E.E., Bernstein, A. & Whiteheart, S.W. Each domain of the N-ethylmaleimide sensitive fusion protein contributes to its transport activity. J. Biol. Chem. 270, 29182–29188 (1995).
Wilson, D.W. et al. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature 339, 355–359 (1989).
Hendrickson, W.A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991).
Fleming, K.G. et al. A revised model for the oligomeric state of the N-ethylmaleimide-sensitive fusion protein, NSF. J. Biol. Chem. 273, 15675–15681 (1998).
Peters, J.-M., Walsh, M.J. & Franke, W.W. An abundant and ubiquitous hom*ooligomeric rinγ-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF. EMBO J 9, 1757–1767 (1990).
Rossmann, M.G., Moras, D. & Olsen, K.W. Chemical and biological evolution of a nucleotide-binding protein. Nature 250, 194–199 (1974).
Holm, L. and Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).
Guenther, B., Onrust, R., Sali, A., O'Donnell, M. & Kuriyan, J. Crystal structure of the d' subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 91, 335–345 (1997).
Walker, J.E., Saraste, M.J., Runswick, J.J. & Gay, N.J. Distantly related sequences in the α- and β-subunits of ATPase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1, 945–951 (1982).
Morgan, A. & Burgoyne, R.D. Is NSF a fusion protein? Trends Cell Biol. 5, 335–339 (1995).
Boisvert, D.C., Wang, J., Otwinowski, Z., Horwich, A.L. & Sigler, PB. The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATP---S. Nature Struct Biol 3, 170–177 (1996).
Saraste, M. and Sibbald, P.R. The P-loop-a common motif in ATP- and GTP-binding proteins. Trends Biol Sci 15, 430–434 (1990).
Matveeva, E.A., He, P. & Whiteheart, S.W. N-ethylmaleimide sensitive fusion protein contains high and low affinity ATP-binding sites that are functionally distinct. J. Biol. Chem. 272, 26413–26418 (1997).
Bernard, A. and Payton, M. Fermentation and growth of Escherichia coli for optimal protein production. In Current Protocols in Protein Science. (Coligan,J.E., Dunn, B.M., Plough, H.L., Speicher, D.W. & Wingfield, P.T., Eds) Chapter 5.3 (John Wiley & Sons, Inc., New York; 1995).
Leahy, D.J., Erickson, H.P., Aukhil, I., Joshi, P. & Hendrickson, W.A. Crystallization of a fragment of human fibronectin: introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine. Proteins 19, 48–54 (1994).
Otwinowski, Z. In Data Collection and Processing. (eds Sawyer, L., Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, UK; 1993).
Brünger, A.T. et al. Crystallography and NMR System (CNS): A new software system for macromolecular structure determination. Acta Crystallogr. D, in the press (1998).
Phillips, J.C. & Hodgson, K.O. The use of anomalous scattering effects to phase diffraction patterson from macromolecules. Acta Crystallogr. A 36, 856–864 (1980).
Pannu, N.S. & Read, R.J. Improved structure refinement through maximum likelihood. Acta Crystallogr. A 52, 659–668 (1996).
Jiang, J.-S. & Brünger, A.T. Protein hydration observed by x-ray diffraction: solvation properties of penicillopepsin and neuraminidase crystal structures. J. Mol. Biol. 243, 100–115 (1994).
Zhang, K.Y.J. & Main, P. Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Crystallogr. A 46, 41–46 (1990).
Jones, T.A. Zou, J.Y., Cowan, S. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
Rice, L.M. & Brünger, A.T. Torsion Angle Dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement. Proteins 19, 277–290 (1994).
Yu, H.-A., Karplus, M. & Hendrickson, W.A. Restrains in temperature-factor refinement for macromolecules: an evaluation by molecular dynamics. Acta Crystallogr. D 41, 191–201 (1985).
Lenzen, C.U., Oppitz, D., Whiteheart, S.W. & Weis, W.I. Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell, in the press (1998).
Kabsch, W. and Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).
Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
Hofmann, K. & Baron, M.D. Boxshade 3.21 http://www.ch.embnet.org/software/BOX_form.html (1998).
Esnouf, R.M. Bobscript: An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model 15, 132–134 (1997).
The POV-ray Team. Pov-ray -- the persistence of vision raytracer, http://www.povray.org/ (1998).
Kraulis, P. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).
Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51–55 (1996).
Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).
Jorgensen, W.L. and Rives, J.T. The OPLS potential functions for protein energy minimizations for crystals of cyclic peptide and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988).
Burling, F.T., Weis, W.I., Flaherty, K.M. & Brünger, A.T. Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science 271, 72–77 (1996).